Receptor-directed chimeric toxins created by sortase-mediated protein fusion.
نویسندگان
چکیده
Chimeric protein toxins that act selectively on cells expressing a designated receptor may serve as investigational probes and/or antitumor agents. Here, we report use of the enzyme sortase A (SrtA) to create four chimeric toxins designed to selectively kill cells bearing the tumor marker HER2. We first expressed and purified: (i) a receptor recognition-deficient form of diphtheria toxin that lacks its receptor-binding domain and (ii) a mutated, receptor-binding-deficient form of anthrax-protective antigen. Both proteins carried at the C terminus the sortase recognition sequence LPETGG and a H₆ affinity tag. Each toxin protein was mixed with SrtA plus either of two HER2-recognition proteins--a single-chain antibody fragment or an Affibody--both carrying an N-terminal G₅ tag. With wild-type SrtA, the fusion reaction between the toxin and receptor-recognition proteins approached completion only after several hours, whereas with an evolved form of the enzyme, SrtA*, the reaction was virtually complete within 5 minutes. The four fusion toxins were purified and shown to kill HER2-positive cells in culture with high specificity. Sortase-mediated ligation of binary combinations of diverse natively folded proteins offers a facile way to produce large sets of chimeric proteins for research and medicine.
منابع مشابه
Tools and Technologies Receptor-Directed Chimeric Toxins Created by Sortase- Mediated Protein Fusion
Chimeric protein toxins that act selectively on cells expressing a designated receptor may serve as investigational probes and/or antitumor agents. Here, we report use of the enzyme sortase A (SrtA) to create four chimeric toxins designed to selectively kill cells bearing the tumor marker HER2. We first expressed and purified: (i) a receptor recognition-deficient form of diphtheria toxin that l...
متن کاملIn silico fusion of epsilon and beta toxin genes of Clostridium perfringens types D and B
Fusion protein technology represents the strategy to achieve rapid, efficient, and cost-effective proteinexpression. Epsilon and Beta toxins are the most potent Clostridial toxins and cause disease in animals.This study describes in silico fusion of Clostridium perfringens types D and B epsilon and beta toxin genesthat was used for cloning in E.coli. The etx and cpb genes were...
متن کاملExpression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies
Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...
متن کاملDesigning and Analyzing the Structure of DT-STXB Fusion Protein as an Anti-tumor Agent: An in Silico Approach
Background & Objective: A main contest in chemotherapy is to obtain regulator above the biodistribution of cytotoxic drugs. The utmost promising strategy comprises of drugs coupled with a tumor-targeting bearer that results in wide cytotoxic activity and particular delivery. The B-subunit of Shiga toxin (STxB) is nontoxic and possesses low immunogenicity that exactly binds to t...
متن کاملProtein-Protein Fusion Catalyzed by Sortase A
Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2013